Chip-based quantum key distribution

نویسندگان

  • P Sibson
  • C Erven
  • M Godfrey
  • S Miki
  • T Yamashita
  • M Fujiwara
  • M Sasaki
  • H Terai
  • M G Tanner
  • C M Natarajan
  • R H Hadfield
  • J L O'Brien
  • M G Thompson
چکیده

Improvement in secure transmission of information is an urgent need for governments, corporations and individuals. Quantum key distribution (QKD) promises security based on the laws of physics and has rapidly grown from proof-of-concept to robust demonstrations and deployment of commercial systems. Despite these advances, QKD has not been widely adopted, and large-scale deployment will likely require chip-based devices for improved performance, miniaturization and enhanced functionality. Here we report low error rate, GHz clocked QKD operation of an indium phosphide transmitter chip and a silicon oxynitride receiver chip-monolithically integrated devices using components and manufacturing processes from the telecommunications industry. We use the reconfigurability of these devices to demonstrate three prominent QKD protocols-BB84, Coherent One Way and Differential Phase Shift-with performance comparable to state-of-the-art. These devices, when combined with integrated single photon detectors, pave the way for successfully integrating QKD into future telecommunications networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photonic quantum computers and communication systems

Quantum information processors have been proposed to solve classically intractable or unsolvable problems in computing, sensing, and secure communication. There has been growing interest in photonic implementations of quantum processors as they offer relatively long coherence lengths, precise state manipulation, and efficient measurement. In this thesis, we first present experimental techniques...

متن کامل

LDPC-Coded -ary PSK Optical Coherent State Quantum Communication

This paper addresses two important problems of interest for deep-space optical communications, quantum inter-chip/intra-chip optical communications and quantum-key distribution: 1) the problem of coded -ary phase-shift keying optical coherent-state quantum communication in the absence of background radiation, and 2) the problem of coded binary coherent state communication in the presence of bac...

متن کامل

Fluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells

Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...

متن کامل

High Speed Travelling Wave Single-Photon Detectors With Near- Unity Quantum Efficiency

Ultrafast, high quantum efficiency single photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. Close-to-unity photon detection efficiency is essential for scalable measurement-based quantum computation, quantum key distribution, and loophole-free Bell experiments. However, imperfect modal matching and finite photon absorption rates have u...

متن کامل

Custom Hardware to Eliminate Bottlenecks in QKD Throughput Performance

The National Institute of Standards and Technology (NIST) high-speed quantum key distribution (QKD) system was designed to include custom hardware to support the generation and management of gigabit data streams. As our photonics improved our software sifting algorithm couldn’t keep up with the amount of data generated. To eliminate this problem we implemented the sifting algorithm into our pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017